Reduced-order models for flow control: balanced models and Koopman modes
نویسندگان
چکیده
This paper addresses recent developments in model-reduction techniques applicable to fluid flows. The main goal is to obtain low-order models tractable enough to be used for analysis and design of feedback laws for flow control, while retaining the essential physics. We first give a brief overview of several model reduction techniques, including Proper Orthogonal Decomposition [3], balanced truncation [8, 9], and the related Eigensystem Realization Algorithm [5, 6], and discuss strengths and weaknesses of each approach. We then describe a new method for analyzing nonlinear flows based on spectral analysis of the Koopman operator, a linear operator defined for any nonlinear dynamical system. We show that, for an example of a jet in crossflow, the resulting Koopman modes decouple the dynamics at different timescales more effectively than POD modes, and capture the relevant frequencies more accurately than linear stability analysis.
منابع مشابه
Extension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes
In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...
متن کاملComparison of optimized Dynamic Mode Decomposition vs POD for the shallow water equations model reduction with large-time-step observations
We propose a framework for dynamic mode decomposition of 2D flows, when numerical or experimental data snapshots are captured with large time steps. Such problems originate for instance from meteorology, when a large time step acts like a filter in obtaining the significant Koopman modes, therefore the classic dynamic mode decomposition method is not effective. This study is motivated by the ne...
متن کاملReduced-order models for control of fluids using the eigensystem realization algorithm
As sensors and flow control actuators become smaller, cheaper, and more pervasive, the use of feedback control to manipulate the details of fluid flows becomes increasingly attractive. One of the challenges is to develop mathematical models that describe the fluid physics relevant to the task at hand, while neglecting irrelevant details of the flow in order to remain computationally tractable. ...
متن کاملReduced-Order Modeling of Channel Flow Using Traveling POD and Balanced POD
Reduced-order models of the flow in a plane channel flow are constructed in two regimes: a minimal flow unit in which turbulence is sustained, and a transitional flow linearized about the laminar profile. Proper orthogonal decomposition (POD) of data from a direct numerical simulation of a channel flow in a minimal flow unit is performed in order to examine the coherent structures and their dyn...
متن کاملAn improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD
We propose an improved framework for dynamic mode decomposition (DMD) of 2-D flows for problems originating from meteorology when a large time step acts like a filter in obtaining the significant Koopman modes, therefore, the classic DMD method is not effective. This study is motivated by the need to further clarify the connection between Koopman modes and proper orthogonal decomposition (POD) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009